SECCION AÚREA
La sección áurea, es representada por la letra griega Φ (fi) (en honor al escultor griego Fidias), es el número irracional:
Se trata de un número que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en las partes de un cuerpo, y en la naturaleza como relación entre cuerpos, en la morfología de diversos elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, proporciones humanas, etc.
A lo largo del tiempo todos los artistas han buscado una forma de división de las cosas perfectas pero no había nada que indicase en que proporción debían estar las cosas(seres vivos, objetos...).Ahora sabemos que existe una fórmula muy conocida en el mundo del diseño, que permite dividir el espacio en partes iguales, para lograr un efecto estético agradable y que puede llegar a ser muy eficaz. Esta teoría se denomina "La regla Áurea", también conocida como "divina proporción" o “numero áureo”
Relación con Sistemas Complejos
Rectángulo áureo
Un rectángulo especial es el llamado rectángulo áureo. Se trata de un rectángulo armonioso en sus dimensiones.
Dibujamos un cuadrado y marcamos el punto medio de uno de sus lados. Lo unimos con uno de los vértices del lado opuesto y llevamos esa distancia sobre el lado inicial, de esta manera obtenemos el lado mayor del rectángulo.
Si el lado del cuadrado vale 2 unidades, es claro que el lado mayor del rectángulo vale 1+ 5 por lo que la proporción entre los dos lados es:
(1+ 5 ) /2
A este número se le llama número de oro, se representa por el símbolo Ø y su valor es 1,61803..., lo obtuvieron los griegos al hallar la relación entre la diagonal de un pentágono y el lado. El nombre de "número de oro" se debe a Leonardo da Vinci.
En "el hombre ideal" de Leonardo, el cociente entre el lado del cuadrado y el radio de la circunferencia que tiene por centro el ombligo, es el número de oro.
Otra propiedad de este rectángulo es que si se colocan dos iguales como en la figura de la derecha, se forma otro rectángulo áureo más grande.
Relación con Modelado y Simulación
Los egipcios ya conocían esta proporción y la usaron en la arquitectura de la pirámide de Keops (2600 años a.C.). Los Egipcios descubrieron la proporción áurea por análisis y observación, buscando medidas que les permitiera dividir la tierra de manera exacta., a partir del hombre, utilizando la mano, el brazo, hasta encontrar que media lo mismo de alto que de ancho con los brazos extendidos y encontraron que el ombligo establecía el punto de división en su altura y esta misma ,se lograba de manera exacta, rebatiendo sobre las bases de un cuadrado, una diagonal trazada de la mitad de la base a una de sus aristas. La proporción áurea, paso de Egipto a Grecia y de allí a Roma. Las más bellas esculturas y construcciones arquitectónicas están basadas en dichos cánones.
Aparece en pinturas de Dalí, en la Venus de Boticelli. Esta razón también la usaron en sus producciones artistas del Renacimiento. En España, en la Alambra, en edificios renacentistas como El Escorial ... y en la propia Naturaleza en las espirales de las conchas de ciertos moluscos.
Los griegos también la usaron en sus construcciones, especialmente El Partenón, cuyas proporciones están relacionadas entre sí por medio de la razón áurea.
Esta sucesión de números aparece en la Naturaleza en formas curiosas. Las escamas de una piña aparecen en espiral alrededor del vértice. Si contamos el número de espirales de una piña, encontraremos que siempre es igual a uno de los números de la sucesión de Fibonacci.
Esta sucesión también aparece en el estudio de las leyes mendelianas de la herencia, en la divergencia foliar, en la formación de la concha de algunos moluscos...
Una manera práctica de dibujar una espiral es mediante la construcción rectangular en las espirales de cuadrados; se trata de dibujar el cuadrante de un círculo en cada nuevo cuadrado que se añada.
En la construcción anterior, se empieza con un cuadrado de 1 unidad de lado (el nº 1), se añade uno igual para formar un rectángulo de 2 x 1, a continuación añadimos un cuadrado de 2 x 2 (el nº 3) para formar un rectángulo de 3 x 2; después un cuadrado de 3 x 3 (el nº 4), de manera que el siguiente rectángulo es 5 x 3, el siguiente cuadrado es 5 x 5 (el nº 5), y así sucesivamente.
Glosario
Fi (Φ φ) es la vigésimo primera letra del alfabeto griego. Los romanos al transliterar esta letra a caracteres latinos lo hicieron con el dígrafo ph, representando de esta manera el sonido de p aspirada ([pʰ]) que tenía en griego antiguo: por ejemplo, en Phidias, philosophia o Pharao (en castellano: Fidias, filosofía, faraón). En griego moderno se pronuncia [f].
Número irracional
En matemáticas, un número irracional es cualquier número real que no es racional, es decir, es un número que no puede ser expresado como una fracción , donde m y n son enteros, con n diferente de cero y donde esta fracción es irreducible.
Numero
Un número es una entidad abstracta que representa una cantidad. El símbolo de un número recibe el nombre de numeral. Los números se usan con mucha frecuencia en la vida diaria como etiquetas (números de teléfono, numeración de carreteras), como indicadores de orden (números de serie), como códigos (ISBN), etc. En matemática, la definición de número se extiende para incluir abstracciones tales como números fraccionarios, negativos, irracionales, trascendentales y complejos.
Fibonacci
Fue un matemático italiano, famoso por la invención de la sucesión de Fibonacci, surgida como consecuencia del estudio del crecimiento de las poblaciones de conejos, y por su papel en la popularización del sistema de numeración posicional en base 10 (o decimal) en Europa.
No hay comentarios:
Publicar un comentario